School of Earth and Environment

INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE

The forcing efficacy of tropical volcanic SO2 injection: a case study around the 1991 Mount Pinatubo eruption.

Sandip Dhomse, Graham Mann, Lauren Marshall, Anja Schmidt, Martyn Chipperfield, Ken Carslaw (Leeds), ♪

Nicola Bellouin (Reading), Olaf Morgenstern (NIWA, NZ), Fiona O'Connor, Colin Johnson (Met. Office)

Use CCM simulations with interactive stratospheric aerosol to assess: What would have happened if

- I. Pinatubo would have erupted during westerly phase of QBO
- II. Ozone chemistry is not influenced by sulphate particles (ideal particle)

Volcanically enhanced stratospheric aerosol & complex-feedback mechanisms ▶

Accurate quantification of volcanically induced changes just in the stratosphere is challenging \(\)

- (a) direct SW scattering
- (b) absorption of LW ♪
- (c) ozone loss from heterogeneous chemistry.
- (d) Changes in tropic to pole temp. gradient.

- → These radiative, chemical and dynamical processes inherently coupled (e.g. Dhomse et al., GRL, 2015, no ozone loss in the SH.) ▶
- →Use CCM simulations with interactive aerosol model and compare against observations to better understand feedback pathways.

UK Chemistry and Aerosol Model (UKCA) WERSITY OF LEEDS

UM-UKCA has tropospheric & stratospheric chemistry (CheST) and interactive aerosol microphysics (GLOMAP-mode) with online radiative-dynamical coupling within the UK Met Office Unified Model (high-top ~80km version of HadGEM3 model).

Stratospheric Sulphur chemistry within CheST and coupled to GLOMAP aerosol.

Mann et al., GMD 2010, Dhomse et al., ACP, 2014 OH, hv

Lower boundary condition \(\mathbb{D} \)

Surface emissions)

up)

- ➤ Important updates since Dhomse et al., ACP (2014): (a) UM v8.4 (L96L85), (b) aerosol are coupled with radiation scheme (RADAER), (c) implemented meteoric smoke particle interactions ▶
- > Transient simulations through 1990s Pinatubo-perturbed period
- ➤ Experiments injecting 14Tg SO2 injection, 21-23km (mid-point injection settings for Pinatubo in HErSEA intercomparison for Interactive Stratospheric Aerosol models (ISA-MIP) (see posters X3.10, X3.12)
- ➤ Paired on/off experiments include both the heterogeneous chemistry and the dynamically-induced changes use prescribed SAD datasets >

Þ

eqbo → 3 member ensemble initialised with easterly QBO♪

wqbo → 3 member ensemble initialised with westerly QBO♪

feqbo → 3 member ensemble initialised with easterly QBO but fixed

surface area density (SAD)♪

For more info see poster X3.14

QBO in timeslice control run.

Model has internally-generated QBO and its amplitude and period shows reasonable agreement with the observations, but has slightly younger age of air at the poles (e.g. Dhomse et al., 2014).

Easterly vs Westerly initialisations

Top : 3 ensemble members with at least 6mo <u>easterly</u> QBO (Jun91-Dec91)♪

Bottom: 3 ensemble members with at least 6mo <u>westerly</u> QBO (Jun91-

Evolution of Stratospheric AOD>

W-qbo: insignificant transport in the SH and high biases in the tropical AOD and aerosol plume is transport mainly in the NH.

Extinction at 550 nm and 1020 nm

Effective Radius at 20 & 25km

Modelled Reff is bit low biased and evolution agrees with SAGE at 20km, but biases are larger in the w-qbo runs.

SW clear-sky volcanic forcing

SW and LW forcing

Comparing SW & LW volcanic forcing to ERBE anomaly >

Aerosol inducted warming in the tropical stratosphere.

Change in tropical H2O (%)♪

Heating in the tropical lower stratosphere enhances amount of water vapour entering in the stratosphere.

Changes in total ozone (DU) >

Summary and Outlook

- ➤ Used CCM with interactive stratospheric aerosol to investigate how the QBO phase modulates the effects from major tropical eruptions.
- ➤ Simulated aerosol properties with e-QBO and 14Tg SO2 injected between 21-23 km are consistent with most of the observations. ▶
- ➤ Simulations initialised with w-QBO enhances inter-hemispheric asymmetry in stratospheric aerosol.
- Aerosol induced heating significantly modifies the stratospheric transport and causes up to 10 DU toz changes in the tropics.
- □ Experiments to
- (a) analyse effects from major historical tropical eruption
- (b) investigate post 2000 stratospheric aerosol increase (hiatus?).

Extinction at 550 nm and 1020 nm

Sensitivity to Injection Heights

20 tonnes of SO2 is emitted at 15N at different altitudes

Sensitivity to Injection Heights

Lower the injection height – faster removal into the troposphere

NO2 Changes- Sunrise and Sunset

Simulations with time-varying aerosols capture NO2 changes

Chemical ozone loss

Cohen and Murphy

Figure 2. Ozone loss from each type of catalytic cycle as a function of NO_x abundance.

NOx→ HNO3→ less NO2→ more Cl, Br

Solar Cycle, QBO and Ozone – connection)

What would have happened if

- I. Pinatubo would have erupted during westerly phase of QBO
- II. Ozone chemistry is not influenced by sulphate particles (ideal particles for geo-engineering?)

QBO Descending Westerlies

QBO Descending Easterlies

Schematic illustration of the tropical QBO showing the mean wind pattern, mean circulation, and mean thermal pattern

Pinatubo signal in CCMs (CCMVal-2)

None of the CCM could simulate Pinatubo ozone loss correctly -SPARC Report 2010, WMO 2011

GHGs still increasing- Models also simulate warming but observations show very little increase (Hadley Centre data)

Piers's talk on Thursday!

Suggested Hypotheses

- Ocean heat uptake
- Strat. Aerosol
- Stra. Water vapour
- Solar cycle

Stratospheric Aerosol, Solomon et al., 2011

Sulphate Area Density (SAD) Comparison

UKCA

Satellite

SAD data- SPARC 2010

Satellite data – longer wavelengths/ larger particles

- SAGE –Vis/IR
- CLAES- Micro
- HALOE -IR

Larger SAD immediately after the eruption

Densities in Different Modes

Varying mass and numbers between different modes